Vectors
Vectors are re-sizable arrays. Like slices, their size is not known at compile time, but they can grow or shrink at any time. A vector is represented using 3 parameters:
- pointer to the data
- length
- capacity
The capacity indicates how much memory is reserved for the vector. The vector can grow as long as the length is smaller than the capacity. When this threshold needs to be surpassed, the vector is reallocated with a larger capacity:
fn main() { // Iterators can be collected into vectors let collected_iterator: Vec<i32> = (0..10).collect(); println!("Collected (0..10) into: {:?}", collected_iterator); // The `vec!` macro can be used to initialize a vector let mut xs = vec![1i32, 2, 3]; println!("Initial vector: {:?}", xs); // Insert new element at the end of the vector println!("Push 4 into the vector"); xs.push(4); println!("Vector: {:?}", xs); // Error! Immutable vectors can't grow collected_iterator.push(0); // FIXME ^ Comment out this line // The `len` method yields the number of elements currently stored in a vector println!("Vector length: {}", xs.len()); // Indexing is done using the square brackets (indexing starts at 0) println!("Second element: {}", xs[1]); // `pop` removes the last element from the vector and returns it println!("Pop last element: {:?}", xs.pop()); // Out of bounds indexing yields a panic println!("Fourth element: {}", xs[3]); // FIXME ^ Comment out this line // `Vector`s can be easily iterated over println!("Contents of xs:"); for x in xs.iter() { println!("> {}", x); } // A `Vector` can also be iterated over while the iteration // count is enumerated in a separate variable (`i`) for (i, x) in xs.iter().enumerate() { println!("In position {} we have value {}", i, x); } // Thanks to `iter_mut`, mutable `Vector`s can also be iterated // over in a way that allows modifying each value for x in xs.iter_mut() { *x *= 3; } println!("Updated vector: {:?}", xs); }
More Vec
methods can be found under the std::vec module