Functions
Ignoring elision, function signatures with lifetimes have a few constraints:
- any reference must have an annotated lifetime.
- any reference being returned must have the same lifetime as an input or be
static
.
Additionally, note that returning references without input is banned if it would result in returning references to invalid data. The following example shows off some valid forms of functions with lifetimes:
// One input reference with lifetime `'a` which must live // at least as long as the function. fn print_one<'a>(x: &'a i32) { println!("`print_one`: x is {}", x); } // Mutable references are possible with lifetimes as well. fn add_one<'a>(x: &'a mut i32) { *x += 1; } // Multiple elements with different lifetimes. In this case, it // would be fine for both to have the same lifetime `'a`, but // in more complex cases, different lifetimes may be required. fn print_multi<'a, 'b>(x: &'a i32, y: &'b i32) { println!("`print_multi`: x is {}, y is {}", x, y); } // Returning references that have been passed in is acceptable. // However, the correct lifetime must be returned. fn pass_x<'a, 'b>(x: &'a i32, _: &'b i32) -> &'a i32 { x } //fn invalid_output<'a>() -> &'a String { &String::from("foo") } // The above is invalid: `'a` must live longer than the function. // Here, `&String::from("foo")` would create a `String`, followed by a // reference. Then the data is dropped upon exiting the scope, leaving // a reference to invalid data to be returned. fn main() { let x = 7; let y = 9; print_one(&x); print_multi(&x, &y); let z = pass_x(&x, &y); print_one(z); let mut t = 3; add_one(&mut t); print_one(&t); }